Real Time College

מרכז להכשרות מקצועיות והשמה בתעשיית ההייטק

Home Exercise-3

Q1.

Task	Time Msec	Priority	Transition
T 1	503	50	Comp
T2	500	100	Comp
T3	250	120	Blocked
T4	500	150	Preemption
T3	250	120	Comp
T4	Forever	150	Forever

Q2 .2.1

Task	Time Msec	Priority	Transition	a
T1	3	50	Comp	0
T4	1	80	Comp	80
T2	100	100	Forever	180

A=180. Task 2 has a bigger priority then Task 3. In preemption method the

Task that has a bigger priority will be in the running state on the CPU and Won't let go to Tasks that are in lower priority.

2.2

Task	Time Msec	Priority	Transition	a
T1	3	50	Comp	0
T4	1	80	Comp	80
T2	Time Slice	100	Round robin	180
T3	Time Slice	100	Round robin	280

 \mathbb{Q}

A=280. Task 2 and Task 3 will both run on the CPU, each task in his own Slice time. Round Robin allow all tasks that have the same priority to run On the CPU in a time that was defined before the program was execute.

Real Time College

מרכז להכשרות מקצועיות והשמה בתעשיית ההייטק

2.3.a Preemption

Task	Time Msec	Priority	Transition	A
T1	3	50	Comp	0
T2	Forever	100	Forever	100

2.3.b Round Robin

Task	Time Msec	Priority	Transition	A
T1	3	50	Comp	0
T2	Time Slice	100	Round robin	100
T3	Time Slice	100	Round robin	200

Task 4 will not be able to get into running state in ether case. In preemption method Task 2 will take the CPU and won't let go anytime. In Round Robin

Method Task 2 and Task 3 would always run on the CPU one at a time, each

Task in his slice time.

Q3.

Task	Time Msec	Priority	Transit ion
T1	1	150	Create T2
T2	500	100	Comp
T1	1	150	Create T3
T3	250	120	Blocked
T1	1	150	Create T4
T4	499	140	preemption
T3	250	120	Comp
T4	251	140	Comp
T1	Forever	150	While(1)