
Test on August 2008

These are the methods, variables and definitions that you may use throughout home and class
exercises :
Definitions:
#define INIFINITE_TIMEOUT 0xFFFFFFFF
#define POLICY_FIFO 0x1
#define POLICY_PRIORITY 0x2
#define BLOCK_IF_FAIL 0x1
#define ERROR_IF_FAIL 0x2
#define MAX_PRIORITY 50
#define MIN_PRIORITY 250
Methods:
Mutex:
SemMCreate (&Sem, policy), SemMTake (&Sem, timeoutvalue, shouldBlockIfFail),
SemMGive (&Sem)
Inversion Safe Mutex
SemMPISafeCreate (&Sem), SemMPISafeTake (&Sem, timeoutvalue, shouldBlockIfFail),
SemPISafeGive(&Sem)
Binary Semaphores:
SemBCreate (&Sem, initialHoldingCount, policy), SemBTake (&Sem, timeoutvalue,
shouldBlockIfFail), SemBGive (&Sem)
Counting Semaphores:
SemCCreate (&Sem, initialHoldingCount, maximumAllowedHoldings, policy), SemCTake
(&Sem, timeoutvalue, shouldBlockIfFail), SemCGive (&Sem)
Tasks:
TaskSpawn (&Task, priority),
Block-IO:
Block (time_units)
Interrupts:
DisableIntr (), EnableIntr ()
Busy : Hold_CPU_For (time_units)

Please notice that lower value for the priority indicates a higher priority.
It means that a task that has been spawned with priority 20 will get precedence over a task that has been
spawned with priority 40.

Q1-

o (3)What is the difference between a binary semaphore and a regular counting semaphore?
a. A binary semaphore can be owned by one task only. A regular counting semaphore can be

owned by more than one task.
o (3)How would you initialize a binary semaphore so that the first task that tries to acquire it will

become blocked?
a. I would initialize it to 0 available tokens – empty state.

o (11)Here is a multitasking program that consists of a primary task t1 that is running at priority
20. t1 invokes t1_func. t1 spawns two additional tasks t2 and t3, which invoke t2_func and
t3_func respectively. Please modify the program below in a way that
CODE_FRAGMENT_T2_2 will be executed only after CODE_FRAGMENT_T3_T1 has
completed execution and before CODE_FRAGMENT_T3_2 starts executing. You must not
change priority of the tasks.

t1_func ()
{
 SemBCreate (&SemA, …)
 taskSpawn(&t2, 40)
 taskSpawn(&t3, 50)
 }

t2_func()
{
CODE_FRAGMENT_T2_1
SemBTake (&SemA, …, BLOCK_IF_FAIL);
CODE_FRAGMENT_T2_2
}

t3_func()
{
CODE_FRAGMENT_T3_1
SemBGive (&SemA)
CODE_FRAGMENT_T3_2
}

Q2-
o (8)Explain the difference between round-robin and priority-preemptive scheduling

algorithms according to the sub-questions listed bellow:
§ What is the major requirement from tasks that are subject to participate in round-

robin scheduling?
• They should all share the same priority level.

§ How will the scheduler operate on these tasks if round-robin policy has been
selected?

• Each one of them will be given an equal time slice for running. The
scheduler will transfer control to the next task one the current running
task has reached its time slice.

§ How will the scheduler operate on these tasks if priority-preemptive policy has
been selected?

• Unless the running task will give up the CPU – other tasks with the same
priority will not be able to use the CPU and the scheduler will not
interfere.

§ Is there a difference between the behavior of a system that uses a round-robin
policy and a system that uses a priority-preemptive policy – with respect to tasks
that don't comply with the requirement imposed by 2.1.1?

• No. Tasks with higher priority will always gain the CPU even on roind-
robin system.

o (9)Here is a multitasking system that consists of a primary task t1 that is running at
priority 20. t1 invokes t1_func. t1 spawns two additional tasks t2 and t3, which invoke
t2_func and t3_func respectively. A global int variable myGlobal is to initialized to 15.
What will its final value be according to the sub-questions listed bellow?
§ Using round-robin policy. - 2015
§ Using priority-preemptive policy. - 1015
§ T1 task has been initialized with the priority 60. - 1015

/*
BLOCK function puts t1 in a blocking state infintely.
*/
t1_func ()
{
 myGlobal = 15
 taskSpawn(&t2, 40)
 taskSpawn(&t3, 40)
 Block(INFINITE)
 }

t2_func()
{
 for (i =0; i < 1000; i ++) {
 Hold_CPU_For (1000)
 ATOMIC_INCREMENT(myGlobal)
 }
 Hold_CPU_For (FOREVER)
}

t3_func()
{
 for (i =0; i < 1000; i ++) {
 Hold_CPU_For (2000)
 ATOMIC_DECREMENT(myGlobal)
 }
 Hold_CPU_For (FOREVER)
}

Q3-

o (2)Explain what are the differences between a mutex and a binary semaphore.
§ A mutex can be released only by the task that owns it.
§ Binary semaphores can be initialized to empty state. Mutexs – are always

initialized to available state (according to their definition).
o (2)How would you synchronize tasks that need to access some global resource?

§ I will use a Mutex.
o (2)Will you use this method to synchronize tasks and ISR access?

§ No. Tasks that fail to own the Mutex it should block – but ISR can't block.
o (11)The function insert_value is used in a multitasking system by some tasks to access a

cyclic buffer and modify a specific cell in it. There is also a task in the system that is
invoked periodically to release semaphores that hasn't been released by their owneres for
long periods of time. As you can see from the code bellow, there is a serious potential of
buffer-overrun while accessing the buffer. Please add code which prevents this overrun
state. Please add code which prevents this overrun state. Try to use the most effective
synchronization method. Hints:
§ You can use local variables in the function insert_value as C language permits and

use it.
§ You can also change the order of the commands.

struct MY_STRUCT {
 int val1;
 int val2;
}
global struct MY_STRUCT my_struct[100];
global int cyclic_idx = 0;
/* In the main task */
SemMCreate (&SemA, …)

insert_value (int value1, int value2)
{
 int local_index;

 SemMtake(&SemA,.., BLOCK_IF_FAIL);
 local_index = cyclic_idx ++;
 if (cyclic_idx == 100)
 cyclic_idx = 0;
 SemMGive(&SemA);

 my_struct[local_index].val1 =value1;
 my_struct[local_index].val2 =value2;

 delay_block(2);
}

Q4-
o The system referred to in this question is similar to the one described in Q3. However, ISRs may

also call the function insert_value.
o (3)Why can't we use mutex or semaphores for this issue?

§ ISR can't block on a mutex.
o (3)Is it a good approach to disable interrupts while a task is blocked on an IO/timer

event?
§ No. timer operation is based on the availability of interrupts.

o (11)Please modify the code of insert_value in order to prevent buffer overrun.

insert_value (int value1, int value2)
{
 int local_index;

 DisableIntr ();
 local_index = cyclic_idx ++;
 if (cyclic_idx == 100)
 cyclic_idx = 0;
 EnableIntr ();

 my_struct[local_index].val1 =value1;
 my_struct[local_index].val2 =value2;

 delay_block(2);
}

Q5-

o (3)What is the "priority inversion" phenomena?
o A task with low priority owns a resource while a high priority task is blocked on it, and

an intermediate priority task is running.
o (3)Describe how priority inheritance algorithm provides a solution to this issue.

o Once the higher priority task blocks, the mutex calls the scheduler in order to elevate the
priority of the owning task to the maximum priority among all tasks that are blocked on
it. Therefore, intermediate priority task will not interfere. Once the owner will release the
resource – it will get its original priority back– and the higher priority task will preempt it
and start its execution. Mutexes that provide this capability are using PRIORITY policy.

o (11)Here is a system that consists of 4 tasks: Task1, Task2, Task3 and Task4, which invoke
T1_func – T4_Func respectively. Task1 is the first running task and its priority is 50.

o Provide or draw a time-table, with brief comments of the events that cause re-scheduling.
o Is task1 prevented from running by task4? Please explain.

§ No. We can see that though task4 needs the cpu for infinite period of time – it
never prevents t1 from running.

t1_func ()
{
SemMPISafeCreate (&SemA, POLICY_PRIORITY)
TaskSpawn (&T2, 100);
TaskSpawn (&T3, 150);
TaskSpawn (&T4, 200);
Block (15);
Hold_CPU_For (10)
}

t2_func ()
{
Hold_CPU_For (1)
Block (10)
SemMPISafeTake (&SemA, INFINITE_TIMEOUT, BLOCK_IF_FAIL)
Hold_CPU_For (20)
SemMPISafeGive (&SemA)
}

t3_func ()
{
Hold_CPU_For (1)
Block (5)
Hold_CPU_For (70)
}

t4_func ()
{
Hold_CPU_For (1)

SemMPISafeTake (&SemA, INFINITE_TIMEOUT, BLOCK_IF_FAIL)
Hold_CPU_For (20)
SemMPISafeGive (&SemA)
Hold_CPU_For (INFINITE)
}

Using a mutex that doesn't use priority inheritance.

Seq Task Running

Time
Priority Event Mutex state Total Time Next

transition-
to_ready

1 T1 4 50 Block(15) SemA=1 4 19
2 T2 1 100 Block(10) 5 15
3 T3 1 150 Block(5) 6 11
4 T4 5 200 Pre-by-t3 SemA=0 11
5 T3 4 150 Pre-by-t2 15
6 T2 1 100 Block_Mutex_A SemA=-1 16
7 T3 3 150 Pre-by-t1 19
8 T1 10 50 Compl 29
9 T3 63 150 Compl 92
10 T4 18 200 Pre-by-t2 on

SemRelease
SemA=0 110

11 T2 21 100 Compl SemA=1 131
12 T4 FOREVER 200

Using a mutex that uses priority inheritance.

Seq Task Running

Time
Priority Event Mutex state Total Time Next

transition-
to_ready

1 T1 4 50 Block(15) SemA=1 4 19
2 T2 1 100 Block(10) 5 15
3 T3 1 150 Block(5) 6 11
4 T4 5 200 Pre-by-t3 SemA=0 11
5 T3 4 150 Pre-by-t2 15
6 T2 1 100 Block_Mutex_A SemA=-1 16
7 T4 3 100 Pre-by-t1 19
8 T1 10 50 Compl 29
9 T4 15 100 Pre-by-t2 on

Semrelease
SemA=0 44

10 T2 21 100 Compl SemA=1 65
11 T3 66 150 Compl 131
12 T4 FOREVER 200

Q6-
Here is a system that consists of 5 tasks: Task1- Task5, which invoke T1_func to T5_func
respectively. Task1 is the first running task and its priority is 50.
o (8) Semaphore policy is POLICY_FIFO. Provide or draw a time-table, with brief comments of

the events that cause re-scheduling.
o (8)Semaphore policy is POLICY_PRIORITY. Provide or draw a time-table, with brief comments

of the events that cause re-scheduling.
o The time table will be similar to the one referring to POLICY_FIFO. The reason is that

the first task that became blocked on the semaphore is t4 which has higher priority than
t5.

Global SemA;
T1_func()
{
 SemCCreate (&SemA, 2, 10, policy)
 TaskSpawn (&T2, 60);
 TaskSpawn (&T3, 70);
 TaskSpawn (&T4, 80);
 TaskSpawn (&T5, 90);
 Hold_Cpu_For (3)
}
T2_func()
{
 SemCTake (&SemA, INFINITE, BLOCK_IF_FAIL);
 Use_Cpu_For (10);
 Block (40);
 Use_Cpu_For (1);
}
T3_func()
{
 SemCTake (&SemA, INFINITE, BLOCK_IF_FAIL);
 Use_Cpu_For (1);
 Block (20);
 SemCRelease(&SemA);
 Use_Cpu_For (1);
}
T4_func()
{
 SemCTake (&SemA, INFINITE, BLOCK_IF_FAIL);
 Use_Cpu_For (1);
 Block (20);
 SemCRelease(&SemA);
 Use_Cpu_For (1);
}
T5_func()
{
 Block (4);
 SemCTake (&SemA, INFINITE, BLOCK_IF_FAIL);
 Use_Cpu_For (1);
 Block (20);
 SemCRelease(&SemA);
 Use_Cpu_For (INFINITE);
}

Seq Task Running

Time
Priority Event Semaphore

state
Total Time Next

transition-
to_ready

1 T1 8 50 Compl SemA=2 x-start count

from next
raw

2 T2 11 60 Block(40) SemA=1 11 51
3 T3 2 70 Block(20) SemA=0 13 33
4 T4 1 80 Block_sem_A SemA=-1 14
5 IDLE 4 Pre-by-t4 18
6 T5 1 90 Block_sem_A SemA=-2 19
7 IDLE 14 Pre-by-t3 33
8 T3 2 70 Compl SemA=-1 35
9 T4 1 80 Block(20) 36 56
10 IDLE 15 Pre-by-t2 51
11 T2 1 60 Compl 52
12 IDLE 4 Pre-by-t4 56
13 T4 2 80 Compl SemA=0 58
14 T5 FOREVER 90 SemA=1

