Test on August 2008

These are the methods, variables and definitions that you may use throughout home and class
exercises:

Definitions:

#define INIFINITE_TIMEOUT OXFFFFFFFF

#define POLICY_FIFO 0x1

#define POLICY_PRIORITY 0x2

#define BLOCK _IF_FAIL 0x1

#define ERROR_IF_FAIL 0x2

#define MAX_PRIORITY 50

#defineMIN_PRIORITY 250

Methods:

Mutex:

SemM Cresate (& Sem, policy), SemM Take (& Sem, timeoutvalue, shouldBlocklfFail),
SemM Give (& Sem)

Inversion Safe M utex

SemM Pl SafeCreate (& Sem), SemM Pl SafeT ake (& Sem, timeoutvalue, shouldBlocklfFail),
SemPl SafeGive(& Sem)

Binary Semaphores:

SemBCregte (& Sem, initialHoldingCount, policy), SemBTake (& Sem, timeoutvalue,
shouldBlocklIfFail), SemBGive (& Sem)

Counting Semaphores:

SemCCreate (& Sem, initialHoldingCount, maximumAllowedHoldings, policy), SemCTake
(& Sem, timeoutvalue, shouldBlocklIfFail), SemCGive (& Sem)

Tasks:

TaskSpawn (& Task, priority),

Block-1O:

Block (time_units)

Interrupts:

Disablelntr (), Enablelntr ()

Busy : Hold_CPU_For (time_units)

Please notice that lower value for the priority indicates a higher priority.
It meansthat atask that has been spawned with priority 20 will get precedence over atask that has been
spawned with priority 40.

Ql-

0 (3)What isthe difference between a binary semaphore and a regular counting semaphore?

a A binary semaphore can be owned by one task only. A regular counting semaphore can be
owned by more than one task.

0 (3)How would you initialize a binary semaphore so that the first task that triesto acquire it will
become blocked?

a | would initialize it to 0 available tokens — empty state.

0 (11)Hereisamultitasking program that consists of a primary task t1 that is running at priority
20. t1 invokes t1_func. t1 spawns two additional tasks t2 and t3, which invoke t2_func and
t3_func respectively. Please modify the program below in away that
CODE_FRAGMENT_T2_2 will be executed only after CODE_FRAGMENT_T3 T1 has
completed execution and before CODE_FRAGMENT _T3_2 starts executing. You must not
change priority of the tasks.

t1_func ()

{
SemBCreate (& SemA, ...)
taskSpawn(&t2, 40)
taskSpawn(&t3, 50)

}

t2_func()

{

CODE_FRAGMENT T2 1

SemBTake (& SemA, ..., BLOCK_IF_FAIL);
CODE_FRAGMENT T2 2

}

t3_func()

{

CODE_FRAGMENT T3 1
SemBGive (&SemA)
CODE_FRAGMENT T3 2
}

Q2-

0 (8)Explain the difference between round-robin and priority-preemptive scheduling
algorithms according to the sub-questions listed bellow:

8 What isthe major requirement from tasks that are subject to participate in round-
robin scheduling?

They should al share the same priority level.

8 How will the scheduler operate on these tasks if round-robin policy has been
selected?

Each one of them will be given an equal time dice for running. The
scheduler will transfer control to the next task one the current running
task has reached its time slice.

8 How will the scheduler operate on these tasks if priority-preemptive policy has
been selected?

Unless the running task will give up the CPU — other tasks with the same
priority will not be able to use the CPU and the scheduler will not
interfere.

8 Isthere adifference between the behavior of a system that uses a round-robin
policy and a system that uses a priority-preemptive policy — with respect to tasks
that don't comply with the requirement imposed by 2.1.17?

No. Tasks with higher priority will always gain the CPU even on roind-
robin system.

0 (9)Hereisamultitasking system that consists of a primary task t1 that is running at
priority 20. t1 invokes t1_func. t1 spawns two additional taskst2 and t3, which invoke
t2_func and t3_func respectively. A global int variable myGlobal is to initialized to 15.
What will its final value be according to the sub-questions listed bellow?

§ Using round-robin policy. - 2015

§ Using priority-preemptive policy. - 1015

§ T1task hasbeeninitialized with the priority 60. - 1015

/-k
BLOCK function puts t1 in a blocking state infintely.
*/
t1 func ()
{
myGlobal = 15
taskSpawn(&t2, 40)
taskSpawn(&t3, 40)
Block(INFINITE)
}

t2_func()
{
for (i =0; i <1000; i ++) {
Hold_CPU_For (1000)
ATOMIC_INCREMENT (myGlobal)

}
Hold_CPU_For (FOREVER)

}

t3_func()
{
for (i =0; i <1000; i ++) {
Hold_CPU_For (2000)
ATOMIC_DECREMENT(myGlobal)

}
Hold_CPU_For (FOREVER)

}

Q3-

0 (2)Explain what are the differences between a mutex and a binary semaphore.
8§ A mutex can be released only by the task that ownsit.
§ Binary semaphores can be initialized to empty state. Mutexs — are dways
initialized to available state (according to their definition).
0 (2)How would you synchronize tasks that need to access some global resource?
8 | will use aMutex.
0 (2)Will you use this method to synchronize tasks and | SR access?
8 No. Tasksthat fail to own the Mutex it should block — but ISR can't block.
0 (11)Thefunction insert_valueis used in a multitasking system by some tasks to access a

cyclic buffer and modify a specific cell init. Thereisaso atask in the system that is
invoked periodically to release semaphores that hasn't been released by their owneres for
long periods of time. As you can see from the code bellow, there is a serious potential of
buffer-overrun while accessing the buffer. Please add code which prevents this overrun
state. Please add code which prevents this overrun state. Try to use the most effective
synchronization method. Hints:

8 You can uselocal variablesin the function insert_value as C language permits and

useit.
8 You can aso change the order of the commands.

sruct MY_STRUCT {
int val;
int vaz;
}
global struct MY_STRUCT my_struct[100];
global int cyclic_idx = 0;
/* Inthe main task */
SemMCreate (& SemA, ...)

insert_value (int valuel, int value?)
int loca_index;
SemMtake(& SemA,.., BLOCK_IF_FAIL);
local_index = cyclic_idx ++;
if (cyclic_idx == 100)
cyclic_idx =0;
SemM Give(& SemA);

my_struct[loca_index].vall =valuel;
my_struct[loca_index].val2 =value2;

delay_block(2);

Q4-
0 The systemreferred to in this question is smilar to the one described in Q3. However, |SRs may
also cal the function insert_value.

0 (3)Why can't we use mutex or semaphores for this issue?
§ ISR can't block on a mutex.

o (3)Isit agood approach to disable interrupts while atask is blocked on an 10/timer

event?

8 No. timer operation is based on the availability of interrupts.

0 (11)Please modify the code of insert_value in order to prevent buffer overrun.

insert_value (int valuel, int value?)

{

int loca_index;

Disablelntr ();

local_index = cyclic_idx ++;

if (cyclic_idx == 100)
cyclic_idx = 0;

Enableintr ();

my_struct[loca_index].vall =valuel;
my_struct[loca_index].val2 =value2;

delay_block(2);

Q5>
0 (3)What isthe "priority inversion" phenomena?

0 A task with low priority owns aresource while a high priority task is blocked on it, and
an intermediate priority task is running.

0 (3)Describe how priority inheritance algorithm provides a solution to thisissue.

0 Oncethe higher priority task blocks, the mutex calls the scheduler in order to elevate the
priority of the owning task to the maximum priority among all tasks that are blocked on
it. Therefore, intermediate priority task will not interfere. Once the owner will release the
resource — it will get its original priority back— and the higher priority task will preempt it
and start its execution. Mutexes that provide this capability are using PRIORITY policy.

0 (11)Hereisasystem that consists of 4 tasks: Taskl, Task2, Task3 and Task4, which invoke
T1 func—T4 Func respectively. Taskl isthe first running task and its priority is 50.

0 Provide or draw atime-table, with brief comments of the events that cause re-scheduling.

0 Istaskl prevented from running by task4? Please explain.

8 No. We can see that though task4 needs the cpu for infinite period of time — it
never preventstl from running.

t1_func ()

{

SemMPI SafeCreate (& SemA, POLICY_PRIORITY)
TaskSpawn (& T2, 100);

TaskSpawn (& T3, 150);

TaskSpawn (& T4, 200);

Block (15);

Hold_CPU_For (10)

}

t2_func ()

{

Hold_CPU_For (1)

Block (10)

SemMPI SafeTake (& SemA, INFINITE_TIMEOUT, BLOCK _IF_FAIL)
Hold_CPU_For (20)

SemMPI SafeGive (& SemA)

}

t3_func ()

{

Hold_CPU_For (1)
Block (5)
Hold_CPU_For (70)

}

t4_func ()

{
Hold_CPU_For (1)

SemMPI SafeTake (&SemA, INFINITE_TIMEOUT, BLOCK_IF_FAIL)

Hold_CPU_For (20)
SemMPI SafeGive (& SemA)
Hold_CPU_For (INFINITE)

}

Using a mutex that doesn't use priority inheritance.

Seq Task Running Priority Event Mutex state | Total Time | Next
Time transition-
to_ready
1 T1 4 50 Block(15) SemA=1 4 19
2 T2 1 100 Block(10) 5 15
3 T3 1 150 Block(5) 6 11
4 T4 5 200 Pre-by-t3 SemA=0 1
5 T3 4 150 Pre-by-t2 15
6 T2 1 100 Block Mutex A | SemA=-1 16
7 T3 3 150 Pre-by-t1 19
8 T1 10 50 Compl 29
9 T3 63 150 Compl 92
10 T4 18 200 Pre-by-t2 on SemA=0 110
SemRe ease
1 T2 21 100 Compl SemA=1 131
12 T4 FOREVER | 200
Using a mutex that uses priority inheritance.
Seq Task Running Priority Event Mutex state | Total Time | Next
Time transition-
to_ready
1 T1 4 50 Block(15) SemA=1 4 19
2 T2 1 100 Block(10) 5 15
3 T3 1 150 Block(5) 6 11
4 T4 5 200 Pre-by-t3 SemA=0 1
5 T3 4 150 Pre-by-t2 15
6 T2 1 100 Block Mutex A | SemA=-1 16
7 T4 3 100 Pre-by-t1 19
8 T1 10 50 Compl 29
9 T4 15 100 Pre-by-t2 on SemA=0 44
Semrelease
10 T2 21 100 Compl SemA=1 65
1 T3 66 150 Compl 131
12 T4 FOREVER | 200

Q6-
Hereis asystem that consists of 5 tasks: Task1- Task5, which invoke T1 functo T5_func
respectively. Taskl is the first running task and its priority is 50.
0 (8) Semaphore policy is POLICY_FIFO. Provide or draw atime-table, with brief comments of
the events that cause re-scheduling.
0 (8)Semaphore policy isPOLICY_PRIORITY. Provide or draw atime-table, with brief comments
of the events that cause re-scheduling.
0 Thetime table will be smilar to the one referring to POLICY _FIFO. The reason is that
the first task that became blocked on the semaphore is t4 which has higher priority than
t5.

Globa SemA,
T1 func()
{

SemCCresate (& SemA, 2, 10, palicy)
TaskSpawn (& T2, 60);

TaskSpawn (& T3, 70);

TaskSpawn (&T4, 80);

TaskSpawn (&T5, 90);

Hold_Cpu_For (3)
}
T2 _func()
{

SemCTake (&SemA, INFINITE, BLOCK _IF_FAIL);
Use Cpu_For (10);

Block (40);

Use Cpu_For (2);
}
T3 _func()
{

SemCTake (&SemA, INFINITE, BLOCK _IF_FAIL);
Use Cpu_For (2);

Block (20);

SemCReleasg(& SemA);

Use Cpu_For (2);

}
T4 _func()
{
SemCTake (& SemA, INFINITE, BLOCK _IF_FAIL);
Use Cpu_For (2);
Block (20);
SemCReleasg(& SemA);
Use Cpu_For (1);
}
T5 func()
{
Block (4);
SemCTake (& SemA, INFINITE, BLOCK _IF_FAIL);
Use Cpu_For (2);
Block (20);
SemCReleasg(& SemA);
Use Cpu_For (INFINITE);
}

Seq Task Running Priority Event Semaphore | Total Time Next
Time state transition-
to_ready
1 T1 8 50 Compl SemA=2 x-start count
from next
raw
2 T2 1 60 Block(40) SemA=1 11 51
3 T3 2 70 Block(20) SemA=0 13 33
4 T4 1 80 Block sem A | SemA=-1 14
5 IDLE 4 Pre-by-t4 18
6 T5 1 90 Block sem A | SemA=-2 19
7 IDLE 14 Pre-by-t3 33
8 T3 2 70 Compl SemA=-1 35
9 T4 1 80 Block(20) 36 56
10 IDLE 15 Pre-by-t2 51
1 T2 1 60 Compl 52
12 IDLE 4 Pre-by-t4 56
13 T4 2 80 Compl SemA=0 58
14 T5 FOREVER | 90 SemA=1

